اثر بخشی تحریک الکتریکی (tDCS) بر حافظه کاری کودکان مبتلا به اختلال هماهنگی رشدی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه رفتار حرکتی، دانشکدۀ علوم ورزشی، دانشگاه ارومیه، ارومیه، ایران

2 دانشیار، گروه رفتار حرکتی، دانشکدۀ علوم ورزشی، دانشگاه ارومیه، ارومیه، ایران

چکیده

اثر بخشی تحریک الکتریکی (tDCS) بر حافظه کاری کودکان مبتلا به اختلال هماهنگی رشدی

چکیده:
زمینه و هدف: هدف پژوهش حاضر، بررسی اثربخشی تحریک الکتریکی مستقیم مغز (tDCS ) بر حافظه کاری کودکان مبتلا به اختلال هماهنگی رشدی بود.
مواد و روشها: روش پژوهشی نیمه تجربی بود و از طرح پیش‌آزمون – پس‌آزمون و پیگیری با گروه آزمایشی و گروه کنترل استفاده شد.
جامعه آماری پژوهش راکودکان هفت الی ۱۱ ساله شهرستان ارومیه در سال 1397 می باشد. به این منظور، 16 کودک با اختلال هماهنگی رشدی به روش نمونه گیری در دسترس و بر اساس ملاکهای ورود و خروج به عنوان افراد گروه نمونه در نظر گرفته شدند و به صورت تصادفی منظم در دو گروه آزمایش (8نفر) و کنترل (8نفر) تقسیم شد. تحریک الکتریکی مستقیم مغز در 10 جلسه برای گروه آزمایش انجام شد. در حالی که آزمودنی های گروه کنترل چنین مداخله ای دریافت نکردند. جهت گردآوری اطلاعات حافظه کاری از آزمون ان بک استفاده شد. برای آزمون فرضیه پژوهش از آزمون تحلیل واریانس با اندازه های مکرر استفاده گردید.
یافته ها: نتایج نشان داد که تحریک الکتریکی مستقیم مغز (tDCS ) بر افزایش حافظه کاری تأثیر معناداری دارد و این تأثیر تا مرحله پیگیری نیز تداوم می یابد.
نتیجه گیری: از این رویکرد درمانی میتوان در بهبود حافظه کاری در کودکان مبتلا به اختلال هماهنگی رشدی استفاده نمود.
کلیدواژه: اختلال هماهنگی رشد، تحریک الکتریکی، حافظه کاری

کلیدواژه‌ها


عنوان مقاله [English]

The Effectiveness of Transcranial Direct Current Stimulation (tDCS) on Working Memory in Children with Developmental Coordination Disorder (DCD)

نویسندگان [English]

  • golchin shokreh 1
  • fatemeh hosseini 2
1 Masters Student in Physical Training, Learning and Motor Control, Motor Behavior and Sport events Management, Faculty of Sport Sciences
2 . Associate Professor, Department of Motor Behavior, Faculty of Sport Sciences, Urmia University, Nazlou, Urmia, Iran
چکیده [English]

The aim of this study was to evaluate the effectiveness of transcranial direct current stimulation (tDCS) on working memory in children with developmental coordination disorder (DCD). The research method was quasi-experimental with pretest and posttest and retention with experimental and control groups. The research population consisted of children (age: 7-11 years old) in Urmia city in 2018. 16 children with DCD were selected as the sample with convenience sampling method and based on inclusion and exclusion criteria, and then were randomly divided into two groups: experimental (n=8) and control (n=8). The experimental group received 10 sessions (each session 10 minutes) of tDCS on f4 and f3 brain zones with 0.75 mA circuitry. The control group received 10 sessions of sham circuitry for 20 seconds, then the circuity was cut off, but they were not informed of this sham circuity. The data of working memory were collected using N-BACK test. The analysis of variance with repeated measurements was used to test the research hypothesis (P=0.05). The results showed that transcranial direct current stimulation (tDCS) had a significant effect on the enhancement of working memory and the effect would continue to the retention phase (P=0.05). This approach can be used to improve working memory in children with DCD.

کلیدواژه‌ها [English]

  • developmental coordination disorder (DCD)
  • enhancement of working memory
  • N-BACK test
  • transcranial direct current stimulation (tDCS)
  • working memory
1.             Ahmadi KM, Hosseini SA, Rassafiani M, Mohammadian F. Developmental coordination disorder: diagnosis, evaluations, and treatments. 2013.
2.             Kadesjo B, Gillberg C. Developmental coordination disorder in Swedish 7-year-old children. Journal of the American Academy of child & adolescent psychiatry. 1999;38(7):820-8.
3.             Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®): American Psychiatric Pub; 2013.
4.             M SN, NE. Learning how to identify specific deficiencies and methods of rehabilitation. 2017(6):211-20.
5.             Ball MF. Developmental coordination disorder: Hints and Tips for the Activities of daily living: Jessica Kingsley Publishers; 2002.
6.             Best JR, Miller PH. A developmental perspective on executive function. Child development. 2010;81(6):1641-60.
7.             Chevignard M, Pillon B, Pradat-Diehl P, Taillefer C, Rousseau S, Le Bras C, et al. An ecological approach to planning dysfunction: script execution. Cortex. 2000;36(5):649-69.
8.             Alloway TP, Gathercole SE, Adams AM, Willis C, Eaglen R, Lamont E. Working memory and phonological awareness as predictors of progress towards early learning goals at school entry. British Journal of Developmental Psychology. 2005;23(3):417-26.
9.             Gathercole S, Lamont E, Alloway T. Working memory in the classroom In Pickering S (Ed.), Working Memory and Education (pp. 219–240). Amsterdam: Elsevier Press; 2006.
10.           Alloway TP. Working memory, reading, and mathematical skills in children with developmental coordination disorder. Journal of experimental child psychology. 2007;96(1):20-36.
11.           Alloway T. Can interactive working memory training improving learning? Journal of Interactive Learning Research. 2012;23(3):197-207.
12.           Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ. Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences. 2008;105(19):6829-33.
13.           Klingberg T. Training and plasticity of working memory. Trends in cognitive sciences. 2010;14(7):317-24.
14.           Nee DE, Brown JW, Askren MK, Berman MG, Demiralp E, Krawitz A, et al. A meta-analysis of executive components of working memory. Cerebral cortex. 2012;23(2):264-82.
15.           Olesen PJ, Westerberg H, Klingberg T. Increased prefrontal and parietal activity after training of working memory. Nature neuroscience. 2004;7(1):75.
16.           Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB, et al. Modelling neural correlates of working memory: a coordinate-based meta-analysis. Neuroimage. 2012;60(1):830-46.
17.           Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation of children with developmental coordination disorder is different than peers. Pediatrics. 2010;126(3):e678-e86.
18.           Berardelli A, Inghilleri M, Rothwell J, Romeo S, Curra A, Gilio F, et al. Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Experimental brain research. 1998;122(1):79-84.
19.           Tsai C-L. The effectiveness of exercise intervention on inhibitory control in children with developmental coordination disorder: Using a visuospatial attention paradigm as a model. Research in Developmental Disabilities. 2009;30(6):1268-80.
20.           Ehsani F, Bakhtiary A, Jaberzadeh S, Talimkhani A, Hajihasani A. Differential effects of primary motor cortex and cerebellar transcranial direct current stimulation on motor learning in healthy individuals: a randomized double-blind sham-controlled study. Neuroscience research. 2016;112:10-9.
21.           Kuo M-F, Paulus W, Nitsche MA. Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage. 2014;85:948-60.
22.           Jeffery DT, Norton JA, Roy FD, Gorassini MA. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Experimental brain research. 2007;182(2):281-7.
23.           Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of physiology. 2000;527(3):633-9.
24.           Kaski D, Dominguez RO, Allum JH, Bronstein AM. Improving gait and balance in patients with leukoaraiosis using transcranial direct current stimulation and physical training: an exploratory study. Neurorehabilitation and neural repair. 2013;27(9):864-71.
25.           Koyama S, Tanaka S, Tanabe S, Sadato N. Dual-hemisphere transcranial direct current stimulation over primary motor cortex enhances consolidation of a ballistic thumb movement. Neuroscience letters. 2015;588:49-53.
26.           Kwon YH, Cho JS. Effect of Transcranial Direct Current Stimulation on Movement Variability in Repetitive-Simple Tapping Task. The Journal of Korean Physical Therapy. 2015;27(1):38-42.
27.           Lapenta OM, Minati L, Fregni F, Boggio PS. Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation. Frontiers in human neuroscience. 2013;7:256.
28.           Lee Y-S, Yang H-S, Jeong C-J, Yoo Y-D, Jeong S-H, Jeon O-K, et al. The effects of transcranial direct current stimulation on functional movement performance and balance of the lower extremities. Journal of Physical Therapy Science. 2012;24(12):1215-8.
29.           Matsuo A, Maeoka H, Hiyamizu M, Shomoto K, Morioka S, Seki K. Enhancement of precise hand movement by transcranial direct current stimulation. Neuroreport. 2011;22(2):78-82.
30.           Marchese R, Diverio M, Zucchi F, Lentino C, Abbruzzese G. The role of sensory cues in the rehabilitation of parkinsonian patients: a comparison of two physical therapy protocols. Movement Disorders. 2000;15(5):879-83.
31.           Nejati V. Correlation of risky decision making with executive function of brain in adolescences. 2013.
32.           Safaryazdi Z, Nejati V. Comparing impulsivity and risky decision-making in obese and normal individuals. J Qazvin Univ Med Sci. 2012;16(1):58-64.
33.           Kirchner WK. Age differences in short-term retention of rapidly changing information. Journal of experimental psychology. 1958;55(4):352.
34.           Oliveira JF, Zanão TA, Valiengo L, Lotufo PA, Benseñor IM, Fregni F, et al. Acute working memory improvement after tDCS in antidepressant-free patients with major depressive disorder. Neuroscience letters. 2013;537:60-4.
35.           Gillick BT, Kirton A, Carmel JB, Minhas P, Bikson M. Pediatric stroke and transcranial direct current stimulation: methods for rational individualized dose optimization. Frontiers in human neuroscience. 2014;8:739.
36.           Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald PB. Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain stimulation. 2011;4(2):84-9.
37.           Duarte NdAC, Grecco LAC, Galli M, Fregni F, Oliveira CS. Effect of transcranial direct-current stimulation combined with treadmill training on balance and functional performance in children with cerebral palsy: a double-blind randomized controlled trial. PloS one. 2014;9(8):e105777.
38.           Horvath JC, Carter O, Forte JD. Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be). Frontiers in systems neuroscience. 2014;8:2.
39.           Miyaguchi S, Onishi H, Kojima S, Sugawara K, Tsubaki A, Kirimoto H, et al. Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement. Brain research. 2013;1529:83-91.
40.           Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease. Journal of the neurological sciences. 2006;249(1):31-8.
41.           Beeli G, Casutt G, Baumgartner T, Jäncke L. Modulating presence and impulsiveness by external stimulation of the brain. Behavioral and Brain Functions. 2008;4(1):33.
42.           Saeidmanesh M, Pouretemad H, Nilipoor R, Ekhtiari H. Effects of transcranial direct current stimulation in patients with non-fluent aphasia disorder. Bimonthly Audiology-Tehran University of Medical Sciences. 2014;23(2):91-100.
43.           Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental brain research. 2005;166(1):23-30.
44.           Mylius V, Jung M, Menzler K, Haag A, Khader P, Oertel W, et al. Effects of transcranial direct current stimulation on pain perception and working memory. European journal of pain. 2012;16(7):974-82.
45.           Marshall L, Mölle M, Siebner HR, Born J. Bifrontal transcranial direct current stimulation slows reaction time in a working memory task. BMC neuroscience. 2005;6(1):23.
46.           Shiozawa P, Fregni F, Benseñor IM, Lotufo PA, Berlim MT, Daskalakis JZ, et al. Transcranial direct current stimulation for major depression: an updated systematic review and meta-analysis. International Journal of Neuropsychopharmacology. 2014;17(9):1443-52.
47.           Cooke S, Bliss T. Plasticity in the human central nervous system. Brain. 2006;129(7):1659-73.
48.           Ranieri F, Podda MV, Riccardi E, Frisullo G, Dileone M, Profice P, et al. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. Journal of neurophysiology. 2012;107(7):1868-80.
49.           Clark VP, Coffman BA, Trumbo MC, Gasparovic C. Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1H magnetic resonance spectroscopy study. Neuroscience letters. 2011;500(1):67-71.
50.           Robbins TW, Murphy ER. Behavioural pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition. Trends in pharmacological sciences. 2006;27(3):141-8.
51.           Barbey AK, Koenigs M, Grafman J. Dorsolateral prefrontal contributions to human working memory. cortex. 2013;49(5):1195-205.
52.           Javadi AH, Cheng P. Transcranial direct current stimulation (tDCS) enhances reconsolidation of long-term memory. Brain stimulation. 2013;6(4):668-74.