مقایسۀ اثر تحریک الکتریکی مستقیم مغز از قشر بینایی و حرکتی بر یادگیری مهارت پرتاب آزاد بسکتبال

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکدۀ تربیت بدنی و علوم ورزشی، دانشگاه آزاد اصفهان، اصفهان، ایران

2 دانشیار ، دانشکدۀ تربیت بدنی و علوم ورزشی، دانشگاه آزاد اسلامی واحد اصفهان(خوراسگان)، اصفهان، ایران

3 . استادیار، مرکز تحقیقات اعتیاد و علوم رفتاری، دانشگاه علوم پزشکی شهید صدوقی یزد، یزد، ایران

چکیده

مطالعۀ حاضر با هدف مقایسۀ اثر تحریک الکتریکی مستقیم مغز از قشر بینایی و حرکتی بر یادگیری مهارت پرتاب آزاد بسکتبال انجام گرفت. در این مطالعۀ نیمه‌تجربی با طرح تحقیق اندازه‌گیری تکراری، 45 دانشجوی دختر مبتدی در پرتاب آزاد بسکتبال به‌صورت هدفمند انتخاب شدند، و به‌صورت تصادفی در سه گروه 15 نفری تمرینات تحریک الکتریکی مغز از قشر حرکتی، تحریک الکتریکی مغز از قشر بینایی و تحریک ساختگی قرار گرفتند. شرکت‌کنندگان در پیش‌آزمون به اجرای 15 پرتاب آزاد بسکتبال پرداختند. مرحلۀ مداخله در شش روز متوالی انجام گرفت که در هر روز ابتدا تحریک الکتریکی مغز از قشر حرکتی (آندC3 وکاتدFp2)، قشر بینایی (آندOz وکاتدCz) و تحریک ساختگی انجام می‌گرفت و سپس شرکت‌کنندگان به اجرای 15 پرتاب آزاد بسکتبال می‌پرداختند. در آخرین جلسه پس‌آزمون اجرا شد. یک هفته و 21 روز بعد از مرحلۀ پس‌آزمون، به‌ترتیب مرحلۀ یادداری کوتاه‌مدت و بلندمدت انجام گرفت. داده‌ها به روش تحلیل واریانس مرکب تحلیل شد. نتایج نشان داد که تحریک الکتریکی مغز از قشر حرکتی (547/0= η2،0001/0=sig، 908/16=F) و قشر بینایی (346/0= η2،001/0=sig، 410/7=F) موجب بهبود پرتاب آزاد بسکتبال شد. دیگر نتایج نشان داد که تحریک الکتریکی مغز از قشر حرکتی در مقایسه با قشر بینایی موجب بهبود بهتر پرتاب آزاد بسکتبال شد (05/0 p <). به‌طور کلی نتایج مطالعۀ حاضر نشان داد که تحریک الکتریکی مستقیم جمجمه‌ای از قشر حرکتی در موارد مقتضیات زمانی می‌تواند به‌عنوان روش تمرینی جدید در کنار تمرین بدنی در بهبود بهتر مهارت پرتاب آزاد بسکتبال مؤثر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

A Comparison of the Effect of the Transcranial Direct Current Stimulation (tDCS) of Vision and Motor Cortex on Learning of Basketball Free Throw Skill

نویسندگان [English]

  • Roya Mahdipour 1
  • mahdi Namazizadeh 2
  • Rokhsareh Badami 2
  • Hamid Mirhosseini 3
1 PhD Student, Faculty of Physical Education and Sport Sciences, Isfahan Azad University, Isfahan, Iran
2 . Associate Professor, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Isfahan (Khorasgan Branch), Isfahan, Iran
3 Assistant Professor, Faculty of Addiction and Behavioral Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
چکیده [English]

The aim of the current study was to compare the effects of the transcranial direct current stimulation (tDCS) of vision and motor cortex on learning of basketball free throw skill. In this semi-experimental study with repeated measure research design, 45 female students novice at basketball free throw were selected by purposive sampling method and randomly assigned to three groups (each group 15 subjects): tDCS on vision cortex, tDCS on motor cortex and artificial stimulation. In pretest phase, participants had 15 basketball free throws. Intervention phase was performed in 6 consecutive days; firstly, electrical stimulation of the brain was daily performed from the motor cortex (C3 anode and Fp2 cathode), the visual cortex (Oz anode and Cz cathode) and artificial stimulation, and then participants performed 15 free basketball throws. In last session, posttest phase was carried out. One week and 21 days after the posttest phase, short-term and long-term retention phase was performed. Data were analyzed with mixed ANOVA. The results indicated that tDCS on motor cortex (F=16.908, sig=0.0001, η2 =0.547) and vision cortex (F=7.41, sig=0.001, η2=0.346) improved basketball free throw. Other results indicated that tDCS on motor cortex improved basketball free throw more than tDCS on vision cortex (p < 0.05). Overall, the results of the current study indicated that tDCS on motor cortex can be effective as a new training method in addition to physical training to improve basketball free throw skill.

کلیدواژه‌ها [English]

  • motor cortex
  • motor learning
  • Transcranial direct current stimulation
  • vision cortex
1.Schmidt RA, Lee TD. Motor Control and Learning: A Behavioral Emphasis: Human Kinetics; 2005.
2.Crossman ERFW. A THEORY OF THE ACQUISITION OF SPEED-SKILL∗. Ergonomics. 1959;2(2):153-66.
3.Adams JA. Historical review and appraisal of research on the learning, retention, and transfer of human motor skills. Psychological Bulletin. 1987;101(1):41-74.
4.Ohn SH, Park C-i, Yoo W-K, Ko M-H, Choi K, Kim G-M, et al. Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport. 2008;19:43-7.
5.Kumar V, Grover S. Concise textbook of child and adolescent psychiatry. Indian J Psychiatry. 2009;51(3):229-30.
6.Huang L, Deng Y, Zheng X, Liu Y. Transcranial Direct Current Stimulation With Halo Sport Enhances Repeated Sprint Cycling and Cognitive Performance. Frontiers in Physiology. 2019;10:118.
7.Ballard HK, Goen JRM, Maldonado T, Bernard JA. Effects of cerebellar transcranial direct current stimulation on the cognitive stage of sequence learning. Journal of Neurophysiology. 2019;122(2):490-9.
8.Nemanich S, Rich T, Friel K, Gordon A, Gillick B. Bimanual Skill Learning after Transcranial Direct Current Stimulation in Children with Unilateral Cerebral Palsy: A Brief Report. Developmental Neurorehabilitation. 2019;22.
9.Ryan K, Schranz A, Duggal N, Bartha R. Differential Effects of Transcranial Direct Current Stimulation on Antiphase and Inphase Motor Tasks: a Pilot Study. Behavioural Brain Research. 2019;366.
10.Pixa N, Pollok B. Effects of tDCS on Bimanual Motor Skills: A Brief Review. Frontiers in Behavioral Neuroscience. 2018;12:63.
11.Molero-Chamizo A, Alameda J, Béjar T, López M, Rodríguez I, Lérida C, et al. Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance. Cognitive, Affective, & Behavioral Neuroscience. 2018;18.
12. Kumari N. Cerebellar transcranial direct current stimulation to influence motor learning (Doctoral dissertation, Auckland University of Technology.2020,13-18.
13. Seidel-Marzi O, Ragert P. Neurodiagnostics in Sports: Investigating the Athlete’s Brain to Augment Performance and Sport-Specific Skills. Frontiers in Human Neuroscience. 2020;9;14:133.
14. Gowan S, Hordacre B. Transcranial Direct Current Stimulation to Facilitate Lower Limb Recovery Following Stroke: Current Evidence and Future Directions. Brain Sciences. 2020;10(5):310.
15. Bolzoni F, Pettersson L, Jankowska E. Evidence for long-lasting subcortical facilitation by transcranial direct current stimulation in the cat. 2013;13: 3381 – 99.
16. Antal A, Paulus W. Transcranial direct current stimulation and visual perception. Perception. 2008;37(3):367-74.
17. Zhu, F. F., Yeung, A. Y., Poolton, J. M., Lee, T. M. C., Leung, G. K. K., & Masters, R. S. W. Cathodal transcranial direct current stimulation over left dorsolateral prefrontal cortex area promotes implicit motor learning in a golf putting task. Brain Stimulation. 2015;8(4), 784–786.
18. Harris DJ, Wilson MR, Buckingham G, Vine SJ. No effect of transcranial direct current stimulation of frontal, motor or visual cortex on performance of a self-paced visuomotor skill. Psychology of Sport and Exercise. 2019;1;43:368-73.
19. Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA, Classen J, et al. Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clinical Neurophysiology. 2017;128(4):589-603.
20. Ciechanski P, Kirton A. Transcranial direct-current stimulation can enhance motor learning in children. Cerebral cortex. 2017;1;27(5):2758-67.
21.Robins M, Davids K, Bartlett R, Wheat JS. Effects of attentional strategies, task expertise and anxiety on coordination of a discrete multi-articular action. InISBS-Conference Proceedings Archive 2007;12.
22.Jeon SY, Han SJ. Improvement of the Working Memory and Naming by Transcranial Direct Current Stimulation. Ann Rehabil Med. 2012;36(5):585-95.
23.Tseng P, Hsu T-Y, Chang C-F, Tzeng OJL, Hung DL, Muggleton NG, et al. Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. J Neurosci. 2012;32(31):10554-61.
24.Nitsche M, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899-901.
25.Reis J, Schambra H, Cohen L, Buch E, Fritsch B, Zarahn E, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:1590-5.
26.Nitsche M, Lampe C, Antal A, Liebetanz D, Lang N, Tergau F, et al. Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Aktuelle Neurologie. 2006;33.
27.Nitsche M, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, et al. Pharmacological Modulation of Cortical Excitability Shifts Induced by Transcranial Direct Current Stimulation in Humans. The Journal of physiology. 2003;553:293-301.
28.Arul-Anandam AP, Loo C. Transcranial direct current stimulation: A new tool for the treatment of depression? Journal of Affective Disorders. 2009;117(3):137-45.
29.Fregni F, Boggio P, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental brain research Experimentelle Hirnforschung Expérimentation cérébrale. 2005;166:23-30.
30.Nitsche M, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of physiology. 2000;527 Pt 3:633-9.
31. Carlsen AN, Eagles JS, MacKinnon CD. Transcranial direct current stimulation over the supplementary motor area modulates the preparatory activation level in the human motor system. Behavioural Brain Research. 2015;279:68-75.
32.Martini R, St-Pierre M-F, Wilson BN. French Canadian Cross-Cultural Adaptation of the Developmental Coordination Disorder Questionnaire '07: DCDQ-FC. Canadian Journal of Occupational Therapy. 2011;78(5):318-27.